阅读 GPstuff 包中的函数的源代码,对其中注释做的笔记,在 official document 中有些内容没有写。

Read more »

In this post I summarize everything about GP. An individual post will be organized when I felt that I got enough materials, insights, and thoughts.

At the end, I attach all other individual posts about GP or having mentioned GP.

Read more »

Jonathan Ko, “Gaussian Process for Dynamic Systems”, PhD Thesis, University of Washington, 2011.

Bayes filter equation in Eq. 4.1 (p.34) has a typo (should be \propto, not ==)

p(xtz1:t,u1:t1)p(ztxt)p(xtxt1,ut1)p(xt1z1:t1,u1:t2)dxt1p(x_t|z_{1:t},u_{1:t-1}) \propto p(z_t|x_t) \int \textcolor{red}{p(x_t|x_{t-1},u_{t-1})} \textcolor{green}{p(x_{t-1}|z_{1:t-1},u_{1:t-2})} dx_{t-1}

  • Red\textcolor{red}{Red} part is dynamics model, describing how the state xx evolves in time based on the control input uu (p.34)
  • Green\textcolor{green}{Green} part is observation model, describing the likelihood of making an observation zz given the state xx
  • GP-BayesFilter improves these two parts.

The dynamics model maps the state and control (xt,ut)(x_t,u_t) to the state transition Δxt=xt+1xt\Delta x_t = x_{t+1} - x_t. So, the training data is

Dp=<(X,U),X>D_p = <(X,U),X'>

The observation model maps from the state xtx_t to the observation ztz_t. So, the training data is

Do=<X,Z>D_o = <X,Z>

The resulting GP dynamics and observation models are (p.44)

p(xtxt1,ut1)N(GPμ([xt1,ut1],Dp),GPΣ([xt1,ut1],Dp))p(x_t|x_{t-1},u_{t-1}) \approx \mathcal{N}(\text{GP}_\mu([x_{t-1},u_{t-1}],D_p), \text{GP}_\Sigma([x_{t-1},u_{t-1}],D_p))

and

p(ztxt)N(GPμ(xt,Do),GPΣ(xt,Do))p(z_t|x_t) \approx \mathcal{N}(\text{GP}_\mu(x_t,D_o), \text{GP}_\Sigma(x_t,D_o))

Rasmussen, Carl Edward, and Christopher K. I. Williams. 2006. Gaussian Processes for Machine Learning. Adaptive Computation and Machine Learning. Cambridge, Mass: MIT Press. http://www.gaussianprocess.org/gpml/chapters/.

笔记

Sec 2讲了做regression的几乎所有基础理论。

Sec 3讲做classification,没有看。

Sec 4讲不同covairance的性质,未看,待看。

在Sec 5讲模型的训练理论。 这本书里把通常的机器学习中的训练的概念称为model selection,所以作为一个外行花了很长时间才弄明白这部分是讲如何训练的。

Bayesian inference

Read more »

Learning Materials

Posts

从零开始的 IMU 状态模型推导

  • 理论推导比较全面
  • 只讲了 IMU 状态模型,没有涉及 error model,不适合做calibration

IMU校正以及姿态融合

  • 有对应的 GitHub 代码
  • 应该算 batch least square estimation,因为使用了三次 MATLAB 中的 lsqnonlin 函数 (Solve nonlinear least-squares (nonlinear data-fitting) problems)

Papers

Deep Kalman Filter: Simultaneous Multi-Sensor Integration and Modelling; A GNSS/IMU Case Study